یادگیری عمیق با MATLAB
یادگیری عمیق با MATLAB

یادگیری عمیق با MATLAB

17,500 تومان 16,999 تومان

در انبار موجود نمی باشد

ارسال پس از یک روز کاری
متاسفانه این کالا در حال حاضر موجود نیست. می‌توانید از طریق لیست بالای صفحه، از محصولات مشابه این کالا دیدن نمایید
موجود شد به من اطلاع بده
ویژگی های محصول
  • نام کتاب: یادگیری عمیق با MATLAB
  • تألیف: Phil Kim
  • ترجمه : علی توتونچیان
  • قطع: وزیری
  • نوع کاغذ: تحریر
  • نوع جلد:شومیز
  • نوع چاپ: تکرنگ
  • شابک: 9786003072053
  • تعداد صفحات: 168
  • ناشر: انتشارات دانشگاهی کیان
  • قیمت:175/000 ریال

نقد و بررسی

یادگیری عمیق با MATLAB

این کتاب از شش فصل تشکیل شده است که می‌توان آنها را به سه موضوع تقسیم نمود. موضوع اول یادگیری ماشین است که در فصل اول مطرح شده است. یادگیری عمیق در واقع بر مبنای یادگیری ماشین شکل گرفته است. اگر می‌خواهید اساس یادگیری عمیق را بفهمید، نیاز است تا فلسفه‌ای که در پسِ یادگیری ماشین قرار دارد را تا حدودی بدانید. فصل اول با رابطه میان یادگیری ماشین و یادگیری عمیق آغاز می‌شود و با راهبردهای حل مسایل و محدودیت‌های ذاتی یادگیری ماشین ادامه می‌‍‌یابد. در این فصل به جزییات فنی پرداخته نشده است و به جای آن مفاهیم اساسی که در شبکه عصبی و یادگیری عمیق به کار می‌روند، مطرح شده‌اند.
موضوع دوم شبکه‌های عصبی مصنوعی است که در فصل‌های دوم تا چهارم بر آنها تمرکز می‌کنیم. از آنجایی که یادگیری عمیق نوعی از یادگیری ماشین است که از شبکه عصبی استفاده می‌کند، شبکه عصبی و یادگیری عمیق قابل تفکیک نیستند. فصل دوم با مبانی شبکه‌های عصبی، شامل مبانی عملکرد، معماری و قوانین یادگیری آغاز می‌شود. همچنین دلیل سیر تکاملی از شبکه عصبی تک‌لایه به شبکه عصبی چندلایه را نیز ارایه می‌کند. فصل سوم الگوریتم پس‌انتشار را معرفی می‌کند که قانون یادگیری مهمی در شبکه‌های عصبی است و همچنین در یادگیری عمیق نیز به کار می‌رود. این فصل توضیح می‌دهد که ارتباط میان توابع هزینه و قوانین یادگیری چیست و چه توابع هزینه‌ای به طور گسترده در یادگیری عمیق به کار می‌روند.
فصل چهارم چگونگی استفاده از شبکه‌های عصبی در مسایل رده‌بندی را نشان می‌دهد. به دلیل اینکه رده‌بندی یکی از مهم‌ترین کاربردهای یادگیری ماشین است، فصل مجزایی را به آن اختصاص داده‌ایم. برای مثال تشخیص تصاویر که یکی از اصلی‌ترین کاربردهای یادگیری عمیق است، یک مساله رده‌بندی محسوب می‌شود.
موضوع سوم کتاب، یادگیری عمیق است که موضوع اصلی کتاب نیز است. یادگیری عمیق در فصل‌های پنجم و ششم توضیح داده شده است. فصل پنجم عواملی را که موجب کارایی بسیار بالای یادگیری عمیق شده‌اند، معرفی می‌کند. برای درک بهتر، این فصل با تاریخچه موانع و راه‌حل‌هایی که یادگیری عمیق را به وضعیت کنونی رسانده‌اند، آغاز می‌شود. فصل ششم شبکه‌های عصبی کانولوشنال را ارایه می‌کند که یکی از مهم‌ترین روش‌های یادگیری عمیق است. شبکه عصبی کانولوشنال در تشخیص تصاویر کاربرد بسیار زیادی دارد. این فصل با معرفی مفاهیم اساسی و معماری شبکه عصبی کانولوشنال و مقایسه آن با الگوریتم‌های قدیمی‌تر تشخیص تصاویر آغاز می‌شود و با توضیح نقش‌ها و عملکرد لایه کانولوشن و لایه ادغام که اجزای اساسی تشکیل‌دهنده شبکه عصبی کانولوشنال هستند، ادامه می‌یابد. این فصل با مثالی از تشخیص تصویر ارقام به کمک شبکه عصبی کانولوشنال و بررسی تغییرات تصویر در طول عبور از لایه‌ها پایان می‌یابد.
تمام کدهای منبع مورد استفاده در این کتاب در وب‌سایت انتشارات دانشگاهی کیان و در صفحه‌ی شخصی این کتاب به صورت رایگان قابل دانلود است. مثال‌های کتاب در خود MATLAB اجرا شده است و نیازی به استفاده از جعبه‌ابزار ندارد.

این کتاب را نشر “دانشگاهی کیان” به چاپ رسانده و در فروشگاه اینترنتی طحان به فروش می رسد.

نام کتاب: یادگیری عمیق با MATLAB
تألیف: Phil Kim
ترجمه : علی توتونچیانی/انتشارات دانشگاهی کیان

دیدگاهها

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین نفری باشید که دیدگاهی را ارسال می کنید برای “یادگیری عمیق با MATLAB”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

There are no questions yet. Be the first to ask a question about this product.

برای هر پاسخ جدید یک اعلان برای من ارسال کن.

محصولات مرتبط